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Abstract

Most melt-grown and many solution-grown lamellar polymer crystals have curved lateral faces. Mathematical treatments by Mansfield, Point

and Villers, and Toda, have provided a satisfactory interpretation of the shape of such crystal faces in terms of nucleation and relatively slow

propagation rates of layers of attaching stems. The treatments by these authors, which start with the Frank–Seto growth model, assume that the

propagation rates of growth steps to the right (vr) and to the left of the secondary nucleus (vl) are equal. However, for many crystal growth faces

this is not the case; faces which lack a mirror plane perpendicular to the lamella have vrsvl, resulting in asymmetric curvature. Here, we set up and

solve the differential equations and reconstruct the shape of the growth front for the case of asymmetric spreading of steps. The solution is

presented for the simple square lattice model. The asymmetric growth front is still described as part of an ellipse, as in the symmetric case, except

that the centre of the ellipse is translated parallel to the underlying crystallographic plane in the direction of fast v. In forthcoming publications we

will adapt the solution to other 2D Bravais lattices, appropriate to the crystal structures of specific polymers. Thus we will analyze complete habits

of polymers such as polyethylene, poly(ethylene oxide), and poly(vinylidene fluoride), whose {110}, {120} and {110} growth faces, respectively,

are asymmetric. The results of the present work allow a detail kinetic analysis of any well-developed polymer growth face in terms of the step

initiation rate i and the propagation rates vr and vl. The present work also quantifies explicitly the deviations from elliptic shape and the substrate

edge effects, and discusses when these can be ignored.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The discovery of rounded crystal edges [1,2] has played an

important part in understanding polymer crystallization. For

example, it motivated Sadler to propose the rough-surface

theory of crystal growth [3,4]. His theory was intended to

describe crystallization at higher temperatures, where lateral

crystal faces are above their roughening transition temperature

TR. Sadler argued that the fact that the {100} faces in solution-

grown polyethylene become curved at high temperatures

indicates the presence of the roughening transition. In contrast,

{110} faces with somewhat denser packing of surface chains

and hence a higher interaction energy would have a higher TR,

hence the {110} faces remain faceted.

However, subsequent detailed studies [5–7] have shown that

the curvature of {100} faces in polyethylene can be explained

quantitatively by applying Frank’s model of initiation and
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movement of steps [8]. Noticeable curvature occurs when the

average step propagation distance is no more than two orders of

magnitude larger than the stem width b.

The profile of a {100} face in polyethylene is symmetrical

as a consequence of the existence of a mirror plane bisecting

the crystal normal to this face and to the crystal layer.

However, such symmetry does not apply to {110}, and it is

of considerable interest to investigate the shape of curved

profiles of these faces if such profiles could be observed. An

opportunity to observe the entire profile of curved {110} faces

has arisen in very long-chain monodisperse n-alkanes (see

below). Thus far, lenticular crystals have been observed in

these compounds, with the curved faces being the usual {100}

[9]. In fact, pure long alkanes display most if not all the crystal

habits encountered in polyethylene [10–12]. Moreover, in

contrast to polyethylene, crystal lamellae bounded exclusively

by {110} lateral faces can be grown from solution at high

temperatures and low supercooling by using monodisperse

n-alkanes C162H326 and C198H398 [13,14]. While faceted non-

truncated rhombic crystals grow from octacosane, similarly

non-truncated but curved-faced {110}-bounded crystals are

formed from 1-phenyldecane and methylanthracene. Thus the

revelation of the entire {110} face grown at high temperatures
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Fig. 1. (left) An ‘a-axis lenticular’ crystals of alkane C162H326 in 1-

phenyldecane grown from an initially 1.0% solution at 99.5 8C. Interference

optical micrograph. Bar length 10 mm. (right) Schematic outline of the crystal,

indicating the four {110} sectors (from Ref. [13]).
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showed that the distinction between {100} and {110} faces in

terms of their roughening transition temperatures may not be as

significant as Sadler had thought.

However, perhaps a more significant aspect of the observed

curved {110} faces is that the curvature is asymmetric, i.e.

higher at the obtuse apex than at the acute one [13]. As a

consequence, the appearance of the {110}-bounded crystals

from the two aromatic solvents is similar to the lenticular

crystals of polyethylene grown at high Tc, except that their long

dimension is parallel to the crystallographic a-axis (Fig. 1)

rather than the usual b-axis.

In order to rationalize the existence of the new habit it was

assumed that the rates of propagation of left and right steps on

the growing {110} faces were different [13]. In this paper, we

present a mathematical treatment of the profile of a general

polymer crystal face whose growth involves different step

propagation rates in the two opposing directions. We solve the

appropriate differential equation of the secondary nucleation

model with moving face boundaries, using a simple square

lattice model. The solution is directly applicable only to

crystals with a primitive tetragonal unit cell. However, as most

polymer crystals do not fall into this category, in subsequent

publications we will adapt the model to lattices specific to

particular crystalline polymers, construct theoretical shapes of

single crystals, and compare them with those observed

experimentally. As the full crystal habit is specific to each

individual polymer, in this paper we do not discuss the physical

nature of the moving boundaries.
Fig. 2. View along the chain axis of a new molecular layer deposited on a 110

growth face of polyethylene showing the asymmetry of steps. A unit cell is

shown for reference.
2. Summary of the treatment of symmetrical growth
profiles

The Seto–Frank treatment [8,15] starts from a surface

nucleation event creating a pair of steps. The nucleation rate is i

nuclei per unit edge length per time, and the steps travel to the

left and right at an average net rate v (in units of length per

time). The advance of patches of stems on the substrate is

arrested either by collision between left-moving and right-

moving steps, or by the patches reaching the end of the crystal.

If l(x,t) and r(x,t) are the average densities of left and right

steps, respectively, in the vicinity of position x along the

substrate of length L, two flux equations must be satisfied:

vr

vt
ZKv

vr

vx
C iK2vlr (1a)
vl

vt
Z v

vl

vx
C iK2vlr (1b)

These describe the local variation in concentration as a

result of drift, creation and annihilation processes expressed,

respectively, by the first, second and third terms on the right.

The mean slope of a growing face is given by

vy

vx
Z bðlKrÞ (2)

(b is the height of the moving patch).

Assuming that no step enters from outside, the boundary

conditions for Eq. (1) are:

r
KL

2

� �
Z 0 (3a)

l
L

2

� �
Z 0 (3b)

In real crystal growth the substrate length increases

simultaneously with the advance of the growth front. The

substrate ends move outward at a net rate h. Thus, (3) is

replaced by another set of boundary conditions:

rðKht;tÞZ 0 (4a)

lðht;tÞZ 0 (4b)

In the case of the {100} growth in polyethylene for example,

h is determined by G110, the growth rate of the {110} face.

Mansfield [6], Toda [5], and Point and Villers [7] have

obtained solutions of the above equations, deriving the growth

face profile y(x,t). Such y(x,t) describes adequately the

observed [5,16] and simulated [17] shapes of {100} faces of

single crystals of polyethylene and, as found recently [10–12],

long alkanes. y(x) defines an ellipse if a square lattice is used

[6], even though this is not strictly true for very small crystals

[7]. The ellipse becomes leaf-shaped when transposed onto a

polyethylene-like centered rectangular lattice [18]. The {100}

face is given as part of this ellipse when the substrate edge

moves at a rate h!v, i.e. in the case of a truncated lozenge

crystal. On the other hand, if hOv, the outer parts of the {100}

face are described by straight non-crystallographic faces

tangent to the central elliptical section [5,7].
3. Mathematical treatment of the growth profile of

asymmetric faces

For asymmetric faces, the above treatment does not

apply, as mentioned in the introduction. Fig. 2 illustrates the
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difference between the ‘sharp’ (right) and the ‘blunt’ (left) step

on the example of a (110) face of polyethylene. Had the lattice

hexagonal symmetry, there would have been no difference

between the steps or between their propagation rates; the right

and left steps would have been equivalent, both having an

angle of 1208. However, in the orthorhombic lattice of

polyethylene the two step angles differ by 118. Similarly, the

distance between adjacent chains in the {100} plane (length of

the dashed right-hand edge) is shorter than the distance in the

{110} plane (length of the left-hand edge). These differences

would be expected to produce some difference in either the

molecular attachment or detachment rates, or both. With

reference to Fig. 2, Eqs. (1) become

vr

vt
Cvr

vr

vx
Z iKðvr CvlÞlr (5a)

vl

vt
Kvl

vl

vx
Z iKðvr CvlÞlr (5b)

In the next section, we present the solution of Eqs. (5a) and

(5b) with generalized moving boundary conditions, assuming

that for an asymmetric growth face the spreading rates of

substrate edges, hr and hl, can differ.

rðKhlt;tÞZ 0 (5c)

lðhrt;tÞZ 0 (5d)

As already mentioned, for simplicity we use here a simple

square lattice model, which is therefore, not directly applicable

to the {110} planes of polyethylene in Fig. 2. A forthcoming

paper will deal explicitly with {110} faces of polyethylene and

long alkanes [19].

Our procedure for solving the above equations is close to

that used by Mansfield for the symmetric growth face. In

principle, it is possible to obtain the solution by using the

coordinate system where the y-axis moves with a velocity dZ
(vrKvl)/2; in that case the system of Eqs. (5a) and (5b) becomes

the system (1a) and (1b), with vZ(vrCvl)/2. However, the

chosen boundary conditions (5c) and (5d) are no longer

analogous to those of Mansfield. They now become

rððdKhlÞt;tÞZ 0

lððdChrÞt;tÞZ 0

Since these boundary conditions are asymmetric, the

solution is not a trivial one. We therefore, chose to solve

Eqs. (5a) and (5b) by another route.

After solving the differential equations in Section 3.1, the

resulting functions r(x,t) and l(x,t) will be used in the

reconstruction of the shape of the growth face (Section 3.2).

The specifics regarding the validity of the approximations used

and the choice of integration limits in the reconstruction of the

growth front are dealt with in the Appendix A. In subsequent

publications, we will adapt the present solutions to different 2D

lattices, which correspond to crystal structures of several

specific polymers, and compare the calculated habits with the

experimentally observed ones. This would provide (a) a test of
our model, and (b) allow us to extract kinetic parameters such

as i, vr and vl for asymmetric faces, which could not be analysed

up to now.
3.1. Solution of the differential equations

On the basis of computer simulations [6], we expect that the

steady-state solutions are functions of the ratio uZx/t only.

Owing to this assumption, total differentials dr and dl are zero

on the characteristic line xZut, so that

vr

vt
Cu

vr

vx
Z 0 (6a)

vl

vt
Cu

vl

vx
Z 0 (6b)

Subtracting the expressions (6a) and (6b) from (5a) and

(5b), respectively, we have:

ðvrKuÞ
dr

dx
Z iKðvr CvlÞlr (7a)

Kðvl CuÞ
dl

dx
Z iKðvr CvlÞlr (7b)

In the steady regime dxZ t0du, so for any definite time

1

t0
ðvrKuÞ

dr

du
Z iKðvr CvlÞlr (8a)

K
1

t0
ðvl CuÞ

dl

du
Z iKðvr CvlÞlr (8b)

As the right hand sides of Eqs. (8a) and (8b) are identical,

the left hand sides are too:

ðvrKuÞ
dr

du
ZKðvl CuÞ

dl

du
(9)

Moreover, at t0[1, iZ(vrCvl)lr, so that

lZ
i

ðvr CvlÞr
(10)

Substituting (10) into (9), we have

dr

du
ðvrKuÞK

i

vr Cvl

ðvl CuÞ

r2

� �
Z 0 (11)

Thus the solutions are

r Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
(12)

and, using (10),

lZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
(13)

It is important to note that Eqs. (12) and (13) fail to satisfy

boundary conditions (5c) and (5d). For vrZvl, it was shown by

Mansfield [6] and by Point and Villers [7] that the assumption

of the sole dependence of l and r on u (affine growth) fails near
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the crystal edges xZKht and xZCht if h!v. Therefore, we

require correction terms that are significant only near the edges.

In the steady state we expect these to be functions of the

distance from the edge, and to be significant only over

distances much smaller than ht.

r Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
C f1ðxChltÞC f2ðKxChrtÞ (14a)

lZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
C f3ðxChltÞC f4ðKxChrtÞ (14b)

Here, f1 and f3 are significant only near the left edge xZK
hlt, while f2 and f4 are significant only near the right edge xZ
hrt. We refer to the last two terms of Eqs. (14a) and (14b) as

edge terms, since only these terms contain the substrate edge

velocities hr and hl. The edge terms and their determination

below are similar to those described by Mansfield [6] except

for the very important difference that r and l functions are not

symmetrically related because of the asymmetry of the growth

face: r(x,t)sl(Kx,t). Since the edge terms are also asymmetric,

we have to define them independently for the densities of right

and left steps. Substituting

x1 Z xChlt (15a)

x2 ZKxChrt (15b)

we have

r Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
C f1ðx1ÞC f2ðx2Þ (16a)

lZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
C f3ðx1ÞC f4ðx2Þ (16b)

Differentiating (16a) and (16b) gives

vr

vx
Z

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
ðvr CvlÞt

ðvrtKxÞ2
C f 01ðx1ÞKf 02ðx2Þ (17)

vr

vt
ZK

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
ðvr CvlÞx

ðvrtKxÞ2
Chlf

0
1ðx1ÞChrf

0
2ðx2Þ

(18)

vl

vx
ZK

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
ðvr CvlÞt

ðvltCxÞ2
C f 03ðx1ÞKf 04ðx2Þ (19)

vl

vt
Z

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
ðvr CvlÞx

ðvltCxÞ2
Chlf

0
3ðx1ÞChrf

0
4ðx2Þ

(20)
Using (16)–(18) in (5a), and (16), (19), (20) in (5b), we have

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
ðvr CvlÞ

ðvrtKxÞ
C ðhl CvrÞf

0
1ðx1Þ

C ðhrKvrÞf
0
2ðx2ÞZKðvr CvlÞ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
ðf3ðx1Þ

"

C f4ðx2ÞÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
ðf1ðx1ÞC f2ðx2ÞÞC ðf1ðx1Þf

C f2ðx2ÞÞðf3ðx1ÞC f4ðx2ÞÞg

#
ð21aÞ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
ðvr CvlÞ

ðvltCxÞ
C ðhlKvlÞf

0
3ðx1Þ

C ðhr CvlÞf
0
4ðx2ÞZKðvr CvlÞ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
ðf3ðx1Þ

"

C f4ðx2ÞÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
ðf1ðx1ÞC f2ðx2ÞÞC ðf1ðx1Þf

C f2ðx2ÞÞðf3ðx1ÞC f4ðx2ÞÞg

#
ð21bÞ

Omitting the first term on the left hand side of Eqs. (21a) and

(21b), which is in both cases O(1/t) and is negligible at large

times, we have

ðhl CvrÞf
0
1ðx1ÞC ðhrKvrÞf

0
2ðx2ÞZKðvr CvlÞ

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
ðf3ðx1ÞC f4ðx2ÞÞ

"

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
ðf1ðx1ÞC f2ðx2ÞÞC ðf1ðx1Þf

C f2ðx2ÞÞðf3ðx1ÞC f4ðx2ÞÞg

#
ð22aÞ

ðhlKvlÞf
0
3ðx1ÞC ðhr CvlÞf

0
4ðx2ÞZKðvr CvlÞ

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r
ðf3ðx1ÞC f4ðx2ÞÞ

"

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
ðf1ðx1ÞC f2ðx2ÞÞC ðf1ðx1Þf

C f2ðx2ÞÞðf3ðx1ÞC f4ðx2ÞÞg

#
ð22bÞ

Near the left edge xZKhlt, x1/0, x2/(hlChr)t, so all the

functions fi with argument x2 and their derivatives with

argument x2 are negligible. Thus, we can rewrite Eqs. (22) in
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the following manner:

ðhl CvrÞf
0
1ðx1ÞZKðvr CvlÞ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlKhl
vr Chl

s
f3ðx1Þ

"

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr Chl
vlKhl

s
f1ðx1ÞC f1ðx1Þf3ðx1Þ

#
ð23aÞ

ðhlKvlÞf
0
3ðx1ÞZKðvr CvlÞ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlKhl
vr Chl

s
f3ðx1Þ

"

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr Chl
vlKhl

s
f1ðx1ÞC f1ðx1Þf3ðx1Þ

#
ð23bÞ

Since the right hand sides of Eqs. (23a) and (23b) are equal,

ðhlCvrÞf
0
1ðx1ÞZ ðhlKvlÞf

0
3ðx1Þ, and

f3 Z
hl Cvr
hlKvl

f1 (24)

The integration constant in (24) is zero because both

functions are zero except in the narrow region of x1/0.

Inserting (24) into Eq. (23a), we have:

df1
dx1

Z
vr Cvl
vlKhl

f 21 (25)

After integration this gives

f1 Z
hlKvl

ðvr CvlÞyCC1ðvlKhlÞ
(26)

where C1 is an integration constant. Substituting (26) into (24),

we have for f3:

f3 Z
hl Cvr

ðvr CvlÞyCC1ðvlKhlÞ
(27)

Repetition of the above treatment of Eqs. (22a) and (22b)

near the right edge xZhrt, x1/(hlChr)t, x2/0, results in the

following expressions for functions f2 and f4.

f2 Z
hr Cvl

ðvr CvlÞyCC2ðvl ChÞ
(28)

f4 Z
hrKvr

ðvr CvlÞyCC2ðvl ChÞ
(29)

where C2 is another integration constant.

Combining parts (16), (26)–(29) of the solution, we have as

a result

r Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r

C
hlKvl

ðvr CvlÞðxChltÞCC1ðvlKhlÞ

C
hr Cvl

ðvr CvlÞðKxChrtÞCC2ðvl ChrÞ
(30a)
lZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r

C
hl Cvr

ðvr CvlÞðxChltÞCC1ðvlKhlÞ

C
hrKvr

ðvr CvlÞðKxChrtÞCC2ðvl ChrÞ
(30b)

To find constants C1 and C2, we use the boundary conditions

(5c) and (5d) at large values of time:

rðKhltÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlKhl
vr Chl

s
K

1

C1

Z 0 (31a)

lðhrtÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrKhr
vl Chr

s
K

1

C2

vrKhr
vl Chr

Z 0 (31b)

C1 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr Cvl

i

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr Chl
vlKhl

s
(32)

C2 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr Cvl

i

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrKhr
vl Chr

s
(33)

Finally, inserting (32) and (33) into (30a) and (30b) we

obtain:

r Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r

C
hlKvl

ðvr CvlÞðxChltÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvr CvlÞ=i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvr ChlÞðvlKhlÞ

p

C
hr Cvl

ðvr CvlÞðKxChrtÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvr CvlÞ=i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ðvrKhrÞðvl ChrÞ
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(34b)
3.2. Shape of the growth front

The profile of the growth front at time t is obtained by

integration of the differential Eq. (2):

yðx;tÞZ b

ðx
Kvlt

lðx0;tÞKrðx0;tÞ
� �

dx0 (35a)



Fig. 3. Three growth fronts given by Eq. (39) for the ratio ib2/(vrCvl)Z0.05

and vaverZ3, with different vl/vr ratios.
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The value of y at x on the left-hand side of the growth front

is calculated by counting all the steps between the left limit

Kvlt and x at a given time, and addingCb for each left-moving

step and Kb for each right-moving step. By analogy, for the

right-hand side of the growth front

yðx;tÞZ b

ðvrt
x

rðx0;tÞKlðx0;tÞ
� �

dx0 (35b)

It must be underlined that we integrate betweenKvlt andC
vrt irrespective of whether the growth front is or is not curtailed

by other faces. If the velocity of the substrate edges is smaller

than that of the growth steps v, the actual growth face limits

will beKhlt andChrt. The blanket use of integration limitsK
vlt andCvrt is justified because, as is shown in Appendix A, for

a finite size crystal, the growth profile is unaffected by the

proximity of the crystal edges.

According to (34a) and (34b), the integrand function in

(35a) is

lKr Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtKx

vltCx

r
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vltCx

vrtKx

r� �

C
vr Cvl

ðvr CvlÞðxChltÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvr CvlÞ=i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvr ChlÞðvlKhlÞ

p

K
vr Cvl

ðvr CvlÞðKxChrtÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvr CvlÞ=i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvrKhrÞðvl ChrÞ

p

(36)

Upon integration the last two terms of Eq. (36) scale as ln t,

while the first term scales as t. Thus, at large times we can

neglect the last two terms and assume

lKr Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s
ðvrKvlÞtK2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvrtKxÞðvltCxÞ

p

� �
(37)

The last two terms of Eq. (36) are the edge terms, already

defined in relation to Eqs. (14), since only these terms contain

the substrate edge velocities hr and hl. It should be borne in

mind that even if vrZhr and vlZhl, there is a difference in

integrands (36) and (37). This difference will be called the non-

elliptical deviation. The substrate edge effect (h!v) contrib-

utes to the overall non-elliptical deviation. The validity of

the switch from integrand (36) to integrand (37) in the

reconstruction of the growth shape is elaborated in the

Appendix A.

After trivial integration we have for the growth front profile

y

t
Z 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

vr Cvl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrK

x

t

� 	
vl C

x

t

� 	r
(38)

which gives, in the standard quadratic form for time-

independent coordinates XZx/t and YZy/t (because the growth

of the crystal is affine):

XC ðvlKvrÞ=2

ðvl CvrÞ=2

� �2
C

Y

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðvr CvlÞ

p

� �2
Z 1 (39)
This is the equation of an ellipse with the centre shifted by

K(vlKvr)/2 along the X-axis. Let us compare the ellipse (39)

with the Mansfield ellipse:

x

v

h i2
C

y

b
ffiffiffiffiffiffi
2iv

p

� �2
Z 1 (40)

In the latter case, the axial ratio R defining the curvature of

the growth face is determined only by the ratio of initiation and

propagation rates:

RZ
b

ffiffiffiffiffiffi
2iv

p

v
Z

ffiffiffi
2

p
b

ffiffiffiffiffi
i

v
:

r
(41)

For the ellipse given by Eq. (39):

RZ
ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

ðvr CvlÞ=2

s
(42)

Here, the axial ratio is also determined solely by the ratio of

initiation rate and the average velocity of propagation in the

right and left directions. Thus the only difference in the shape

of symmetric and asymmetric faces is the shift of the centre of

the ellipse along the x-axis in the latter case. This also means

that the maximum of the growth front is no longer at the centre

of the substrate, but rather is located closer to one of its edges.

The larger the difference in rates of propagation of the right and

left steps, the larger is the shift. These features are illustrated

in Fig. 3.
4. Discussion and conclusion

In the above, we have solved the growth equation for a

lateral crystal face for which the step propagation rate is not

only slow but also unequal in the right and left direction. The

main result is that, as in the symmetrical case, such growth

results in an elliptical y(x) profile of the growth face; however,

the centre of the ellipse is shifted along the x-axis in the

direction of fast step propagation. As in Mansfield’s treatment

of symmetric growth [6], we find that, for long time t, the

elliptical profile is a good approximation even in the case

where the substrate spreading rate h is less than the step

spreading rate v (Appendix A). For very small crystals,

typically below 0.1 mm, a correction is required near the

corners. However, since such small crystals contain a small

number of nucleation sites, the validity of the entire continuum

approach becomes questionable. Thus, where the theory

applies, correction terms are not required.
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Since faces are curved when the average step propagation

distance is no larger than several stem widths, this type of

crystal growth is at the borderline between nucleated and

rough-surface type. Actually, as was noticed by Frank himself

[8], as well as by Sadler [4] and Mansfield [6], a pure

nucleation model cannot be used to describe a curved growth

front. Much in agreement with this judgment, an alternative

derivation of the growth profile of lamellar polymer crystals,

also based on Eqs. (1), has been proposed by Point and Villers

[7]. According to these authors, their equations are equally

applicable to the secondary nucleation and the rough surface

growth mechanism. In actual fact, the curved growth face

shape obtained by Point and Villers is very close to that

obtained by Mansfield.

The mathematical treatment of curved faces growing

asymmetrically, developed in the present work, opens the

way for interpretation of a wide range of polymer crystal

habits. The solution of the growth profile given here is for the

simple square lattice, and is thus directly applicable only to

crystals with a primitive tetragonal crystal unit cell. The next

step is to transpose accurately the equations derived here to 2D

lattices reflecting the crystallography of individual polymer.

This work is now in progress, starting with the specific

examples of polyethylene, poly(vinylidene fluoride) and

poly(ethylene oxide) [19].
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Appendix A

In the reconstruction of the shape of the growth front one

should clarify two issues arising in conjunction with Eqs. (35).

The first one is the validity of neglecting the edge terms in

integrand (36) in the reconstruction of the growth of a real

crystal. This is connected to the effect of the moving substrate

edges Khlt and hrt. The second issue is the choice of

integration limits and its effect on the shape of the growth front.
A.1. Neglect of edge terms

Regarding the first issue, the problem is that before

integration of (35) we do not know whether we are allowed

to neglect the edge terms and replace the integrand (36) by

(37), thus neglecting the substrate edge effect. We will show

below that inclusion of the edge terms indeed makes no

difference to the shape of the crystals of observable size.

For the sake of simplicity we switch to the case of

symmetric growth with vrZvl. We determine the non-elliptical

deviation for this case; even though Mansfield neglected the

edge terms in his original work [6], the extent of the deviation

of the growth front from the elliptical shape was not elaborated.

Converted to the symmetric case, Eqs. (36) and (37) become
Eqs. (A1) and (A2), respectively:
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(A2)

In Fig. A1 the function jlKrj is shown for the following

cases: (1) vZh, correction functions neglected (Eq. (A2)); (2)

vZh, correction functions applied (Eq. (A1)); (3) vZ0.7h,

correction functions applied, the difference with the first case is

due to the boundary effect with the contribution of the substrate

edge effect. The difference between curves 1 and 2, which is

the cause of the non-elliptical shape deviation, scales as 1/t

and becomes negligible with time, as one can see comparing

Fig. A1(a) and (b). This difference, which does not involve the

substrate edge effect, disappears with time very rapidly. The

distortion of the ends of curve 3 is due to the conditions (4a)

and (4b), which require that functions r and l be zero at the

substrate edges Kht and Cht, respectively. The difference

between curves 3 and 1 disappears somewhat more slowly;

nevertheless, as will be shown in Fig. A2, it ceases to have a

noticeable effect once the crystals reach ca. 0.1 mm. In plotting

Fig. A1 we used values of propagation and initiation rates,

which are typical for the growth of real polymer crystals.

We now turn to the construction of the growth front y(x,t),

taking its left hand side as an example. For the cases pertaining

to curves 1 or 2 of Fig. A1, the value of y at x is equal to the area

under these curves between Kvt and x. The results of

integration of (35) with integrands (A1) and (A2) are compared

in Fig. A2. The calculation was performed using the same

kinetic parameters as in Fig. A1. Integration of curve 1 gives

the Mansfield ellipse. The other three growth profiles in

Fig. A2 are obtained by integrating curves 3a, 3b and 3c.

It is clear from Fig. A2 that for crystals larger than ca.

0.1 mm there is indeed no need to apply the correction functions

in the reconstruction of the growth front; the use of integrand

(37) in Eqs. (35a) and (35b) is thus justified. For smaller

crystals the validity of the entire approach becomes dubious

anyway, due to the small number of sites involved.
A.2. Integration limits

The question of integration limits in the construction of the

growth profile y(x) (Eqs. (35a) and (35b)) requires some

consideration. As mentioned before, when the propagation rate

of the crystal edges is smaller than that of the moving steps, the

real growth face exists only between xlZKhlt and xrZChrt.

Accordingly, it would seem rational to use xl as the lower

integration limit in (35a) and xr as the upper integration limit in



Fig. A2. Calculated growth profiles obtained by using in Eq. (35) different

integrands. Curve 1: the integrand is (A2) (curve 1 in Fig. 3). Curves 3a, 3b and

3c: the integrand is (A1) with the parameters equal to those as for curves 3a, 3b,

3c in Fig. A1.

Fig. A1. The absolute value of difference of right-moving and left-moving step

densities for the symmetrical growing plane with vZ500 nm/s. ib2/(vrCvl)Z
0.2. Curve 1: hZv, correction functions neglected. Curve 2 (dashed line): hZv,

correction functions applied. Curve 3 (dotted line): hZ0.7 v, correction

functions applied. Graphs are plotted at times (a) tZ0.02 s, (b) 0.1 s and (c)

0.3 s.
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(35b). However, this would mean that the counting of steps

starts from zero at xlZKhlt and xrZChrt, automatically

giving this points a zero value of y and thus shifting the

reference plane relative to the original x-axis. This was the

approach adopted in Ref. [6]. Furthermore, since in the

asymmetric case the propagation rates of the right and left

substrate edges could differ, this would additionally lead to a

tilt of the reference plane and to a variety of ambiguities when

reconstructing the entire shape of a single crystal.

Given that for finite crystals the truncation effect on the

shape of the growth front is negligible (Fig. A2), we decided

to perform the integration within the entire range between
xZKvlt and xZvrt, even if hl!vl and hr!vr. The fact that in

crystals of visible size the edge effects can be neglected implies

that the value of y(x) will be determined only by the nuclei

formed in the vicinity of x. Therefore, the fact that the growth

front physically does not exist between Kvlt and Khlt, and

between Chrt and Cvrt, does not prevent us from using the

integration limits Kvlt and Cvrt. In this way we avoid the

problems of shifting and tilting reference plane.

In the reconstruction of the growth front we switch between

Eqs. (35a) and (35b) at the point xZ(vrKvl)/2, where the

function jlKrj is zero. The boundary velocities hl!vl near the

left edge and hr!vr near the right edge are taken into account

simply by cutting the growth front at the points xZKhlt and

xZhrt.
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